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Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction
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A model for an imperfectly mixed batch reactor with the chlorine dioxide-iodine-malonic (&MA )
reaction, with the mixing being modelled by chaotic advection, is considered. The reactor is assumed to be
operating in oscillatory mode and the way in which an initial spatial perturbation becomes homogenized is
examined. When the kinetics are such that the only stable homogeneous state is oscillatory then the perturba-
tion is always entrained into these oscillations. The rate at which this occurs is relatively insensitive to the
chemical effects, measured by the Damkohler number, and is comparable to the rate of homogenization of a
passive contaminant. When both steady and oscillatory states are stable, spatially homogeneous states, two
possibilities can occur. For the smaller Damkdhler numbers, a localized perturbation at the steady state is
homogenized within the background oscillations. For larger Damkohler numbers, regions of both oscillatory
and steady behavior can co-exist for relatively long times before the system collapses to having the steady state
everywhere. An interpretation of this behavior is provided by the one-dimensional Lagrangian filament model,
which is analyzed in detail.

DOI: 10.1103/PhysRevE.70.026216 PACS nun®)er82.40.Bj, 82.40.Ck

[. INTRODUCTION The specific chemical reaction that we consider is the
It is well known that mixing can be greatly enhanced bychlprlne dioxide-iodine-malonic acidCDIMA) reaction,

the chaotic motion of fluid elements in unsteady laminarVhich has been shown to exhibit oscillatory behavior both
flows [1-3. An initially smooth distribution of a passive €xPerimentally11,12 and in the kinetics derived to describe
contaminant(passive scalaris distorted by the chaotic ad- the reaction[13,14. One feature of this model is that the
vection and develops a complex spatial structure with higi?fsc_:'"at'ons can arise through a $‘ch”“ca' Hopf pn‘urcaﬂon,
concentration gradients, enhancing diffusive transport. Thig!Ving the possibility of multistability, by the coexistence of
can then lead to the decay of the concentration fluctuation@ StaPle steady state and a stable limit cycle in a certain range
and homogenizatiofd—6]. An imperfectly mixed environ- of the parameters. For the flow we take an oscillatory shear
ment is a common characteristic of many real chemical andoW [15]. The exact nature of the flow is not especially
biological processes. Even very small fluctuations in temimportant, all we really require is that the time-dependent
perature or concentration in the medium, presumed to bgow can generate chaotic advection of fluid elements, i.e., it
totally homogeneous, can have important effects in the press chaotic when viewed in its Lagrangian description. The
ence of nonlinear dynamics. In laboratory experiments, 1‘0|Q.SClllatlng shear flow has this property, our choice being mo-

example, strong stirring is frequently used to achieve goo(ﬁwated by ease of implementation for the numerical simula-

homogeneity of the reactants. Nevertheless, perfect homo lons. The basic situation we address is that of a system
mog Y ; ; P 9 itially oscillating homogeneously in space with some initial
neity can never be fully realized and it has been observe

. o atial perturbation applied. The main question is whether
that experimental measurements can depend on stirring ratﬂge system returns to spatially homogeneous oscillations or

[7-10. ) ) ) ) _ .. not, and, if it does, how is this achieved? Does the mixing
The aim of this paper is to study the evolution of initial yrocess have any significant effect on the chemical reaction
inhomogeneities in a system driven by nonlinear chemicaﬁeyond what would be seen for a passive contaminant? Al-
dynamics corresponding to an oscillatory chemical reactiofernatively, the problem can be thought of as how a con-
coupled with diffusion and chaotic advection. In the absencginyum distribution of identical oscillators coupled by diffu-
of transport processe&haotic mixing and diffusionthe  sjon and chaotic advection will respond to an initial
chemical dynamics at each point in the domain of interesyjfference in phase.
can be regarded as an independent nonlinear oscillator. Non- we start by describing our model and deriving the corre-
uniform initial conditions would thus result in a set of iden- sponding advection-reaction-diffusion equations. A numeri-
tical oscillators, each oscillating with different phases. Thereca| study of these two-dimensional equations is then under-
fore we can regard homogenization due to the combinegaken, considering separately the cases when the Hopf
effects of advection and diffusion as a synchronization ofjfurcation in the kinetic system is supercritical and when it
these local oscillators. is subcritical. In the first case the system is taken to be os-
cillating homogeneously in space before a perturbation is
applied. In the second case when the system has two stable
*Corresponding author. Fax:44-1865-310-447; email address: stateshomogeneous steady state and stable limit gytole
istvan.kiss@zoo.ox.ac.uk different scenarios are investigatdd the system is in the
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oscillatory state everywhere except in a small region whickcontrols the chaotic behavior of the flow. The Lyapunov ex-
is set to the steady state, afid most of the system is in the ponent of this flow has the same order of magnitude 8s.1/
steady state and is oscillating in a small part of the domainTransport barriers due to Kolmogorov-Arnold-Mog&AM )

In both cases the dependence of the final state of the systetwri, typically present in periodically driven conservative sys-
on the relative strengths of the stirring rate and rate of théems, can be avoided by breaking the periodicity using a
chemical reaction is investigated. random phasep;, different in each half of the time period.

A one-dimensional Lagrangian model has previously The oscillating nonlinear chemical dynamics that we use
proved to be useful in giving insight into the behavior of is the chlorine dioxide-iodine-malonic aci{€DIMA) reac-
two-dimensional2D) advection-reaction-diffusion problems tion, following the Lengyel-Epstein kinetic scherfiel,14.
[16—2Q (for earlier work see Refs[21-24). This one- In this reaction, the reactor is supplied with malonic acid
dimensional model is analyzed in detail and provides an inf{MA), chlorine dioxide(CIO,), and iodine(l,). The impor-
terpretation of some of the behavior seen in the full model.tant intermediate species are iodide dnd chlorite CIQ

ions, which participate in the following three component sto-

Il. MODEL ichiometric processes:
' ki JMAT[I
The_ gen_eral _problem_ can be glescnbed by a ;eNof MA+1,— IMA+1~+H*, 1= 1l MA][ 2]’ 6)
advection-diffusion-reaction equations, corresponding to a kyg+[12]
stirred batch reactor,
ac - _ 1 -
&—‘;' +v(r,t)- V¢ =Fi(cy, ... o) + DV, (1) ClOz+1" = ClOz + Sl 12=k[CIGIIIT], (V)
wherev(r,t) is an incompressible time-dependent spatially _ - + -
smooth flow advecting fluid elements chaotically within a ClO; + 41"+ 4H" — CI"+ 21, + 2H,0,
finite domain. The flow is presumed to be independent of the
chemical concentrations. The set of functidghsmodels the _ kaglCIOZ ][1][17] 8)
chemical interactions between different components chosen f3= k3y+[l‘]2 : (
such that, in the case of spatially uniform concentrations, the ) _
reaction dynamics The concentrations of the “pool chemicals” MA, GlO
_ and b, are experimentally variable parameters and the prod-
Ci=Fi(cy,...cn) (i=1,...N) (20 ucts IMA and Ct are not considered explicityc,; and c,

denote the concentrations of &nd CIQ, respectively. The
chemical system can be described by the two-variable model
c(t+T)=ci(t) (i=1,...N) forallt. (3) that evolves according to

has a stable limit cycle of perio@,, i.e.,

Chaotic mixing is modelled by a simple time-periodic ve- Ci=ry—rp—4rg, (9)
locity field describing a closed flow within a finite domgén
periodic shear floyw We note that our results are expected to
remain valid for a wide range of two-dimensional laminar
flows capable of producing repeated stretching and folding After substituting the velocity field4) and (5), and the
of fluid elements, a common characteristic of any chaotimonlinear chemical dynamia®) and (10) into the original
advection. The velocity fieldy=(v,v,), advection-diffusion-reactionl), we introduce the following
transformation to obtain dimensionless variables:

szrz_r3. (10)

AL . 1
?SIH(ZWV"' d), ifte [an,n+ ETf)

t — ¢ — C —tUy —r1r _ v
= 1=, =, t=—, r=-, v=—, (11
UX(X,y,t) ) 1 1 US 2 VS L L v UO ( )
0, if te n+_Tf,(n+1)Tf s
2 whereL andUy=L/T; are the characteristic length and ve-
(4) locity scales of the flow and
_ ki [MAT[I,] _ (kg [MADIS]
vy(Xiyit) S_ 1 S_ 2.
1 ko[ CIO,](kyg +[12]) kagko[ ClO,](kyg + [12])
0, ifte {an,n + Eﬂ) (12
AL _ 1 This leads to the equations, on dropping the bars for conve-
?sm(27rx+ ¢ir), ifte|n+ ETf,(n + 1T, nience,
f
dc 4c,C
®) —l+v(r,t)-VclzDa(1—c1— L 22)+Pe‘1DV2c1,
is defined on a doubly periodic square domain of lengti; Jt B+c
is the period andA is a parametewe useA=1.4), that (13
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Jc c.C used wasAt=0.001 and the period of the flow was set at
2 1~2 s1v2
E"‘V(r,t)'VCz:DaDl Ci— + 2 +Pe’V C, Tf:1.0.
At A check on the accuracy of the numerical scheme can be
(14 rovided by the Da=0 case, where the total concentrations of
p y !
¢, andc, should remain constant throughout as reaction ef-
fects are removed. The mean valuescpfand c, were cal-
ko[ CIO,|L LUg De, culated from the numerical results in the Da=0 case and
= T e= D D= D. (15 were found to remain constant to at least ten decimal places.
0 2 C2 This gives confidence that our results for £8 are also

are the Damkdohler and Péclet numbers &nis the ratio of ~ reliable.
the diffusion coefficients corresponding to the two different
componentsk,[ ClO,] is the reference reaction rate. We note

that the Damkdhler number measures the ratio of the chemi-

cal and advective time scales and the Péclet number gives We start by considering the case when the Hopf bifurca-
the ratio between the advective and diffusive transport. Larg&on in the kinetic equations is supercritical, .85 B,. Here
Damkohler numbers correspond to slow stirring or equivawe can only have either a stable steady stiite:> o) or a
lently fast chemical reaction and vice versa. Péclet numberstable limit cycle(if < ay). Thus only values of < ay, are

are usually large, which is the case considered here, thereforelevant for this section and we took=0.375 and g
diffusion alone is not efficient in removing concentration =0.005 for these computations. The evolution of an initial
gradients at large scales. In the present study a range @rturbation is investigated for different values of the
values of the Damkdhler number are explored with the PécléPamkohler number, comparing the cases of Zeroeactivg
number fixed at a large value: and 8 are two chemical and nonzerdreactivg Damkohler numbers.

where

Da

A. Supercritical case, 8> By

(kinetic) parameters given by Initially the system is homogeneous in spa((cg:%c‘l’,
U ‘ c,=5C5 att=0 for allr in Q). If (c,c)) # (c5,c5) the whole

a==—2 B= _322 (16) system oscillates homogeneously and there are no phase dif-

Vs Us ferences or fluctuations. The transport processes in this situ-

ation have no influence as there are no concentration gradi-
_ents and the whole system is governed only by the nonlinear
dchemical dynamics. Different points in the domain can be
regarded as independent nonlinear oscillators. At this stage a
perturbation in the form

The dimensionless scalings of the kinetics in EdS) and
(14) are a modified version of those used originally by Ep
stein and Lengye[13,14, and are the same as those use
previously in Refs[27,28. In particular, the explicit appear-
ance of the parametgrin these scalings allows the nature of
the Hopf bifurcation to be more clearly identified. The ki- 1
netic scheme, essentially dimensionless versions of @ys. ci(x,y,0) = 502(1 +{1+25sin2n(x-y)1}),

and (10), has a steady statécs,cﬁ):(%,zigﬁ) which is

stable for a> aH:§—25,3. This loses stability ata=ay 1

through a Hopf bifurcation. FoB> B,=2.9x 1073, this bi- C(xy,0)= ZcA1 +{1 + 26 si2m(x-y)])  (17)
furcation is supercritical, producing stable limit cycles if 2

a<ay. For f<f, the bifurcation is subcritical, giving @ s applied, wheres is the amplitude of the perturbation. We
range ofa>ay at which there exists both a stable steadyiaye 5=0.5 in the numerical simulations. From the spatial
state and a stable limit cycle. We consider these two scejjstriputions(a typical example is shown in Fig. 1 for Da

narios in our numerical simulations. =0.65 it can be observed that the initial perturbation given
by Eq.(17) (Fig. 1, first ploy is folded and stretched by the
IIl. NUMERICAL SIMULATIONS chaotic advection into increasingly thinner filaments, see Fig.

1 (second to fourth ploys These filaments grow in length

We integrated the advection-diffusion-reaction problemand gradually invade the whole domain with a decrease in
(13) and (14) on a squareQ2=[0,1]x[0,1], using 1000 the local amplitude of the inhomogeneity. At this stage the
X 1000 grid points, applying periodic boundary conditions.filaments overlap and all the points in the domain fluctuate
The numerical method used a semi-Lagrangian scheme f@round some mean, see Fig(fifth to seventh plots In this
the advection combined with an explicit scheme for diffusionphase the characteristic pattern of the spatial strudiume
and a fourth-order Runge-Kutta method for the time integrastable manifold of the advection dynamjids not changing
tion of the local dynamics. The advection step used a semipart from the relatively fast decay of the overall amplitude
Lagrangian scheme at tintg which consists of computing, of the fluctuations. The final state is complete homogeniza-
at each grid point, a backward-time Lagrangian trajectory fotion with the system oscillating in phase, see Figeighth
a timeAt. The concentrations at this fluid element are calcu-and ninth plots
lated by bilinear interpolation using values of the concentra- For the case Da=Qnreactive systejrt has been shown
tions at timety— At and these values are assigned to the origipreviously [4—6], that an initial impurity (passive scalar
nal lattice point at time,. The values of the Péclet number field) is homogenized by the joint action of advection and
and D were kept constant, Pe=40D=1.0. The time step diffusion. Chaotic advection acts very efficiently on large
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FIG. 1. gray level plots of the time evolution @ for Da (b) 0 10 20 30
=0.65 obtained from the numerical integration of E¢E3) and t
(14). Plots 1-7 are at equal time intervdlst=0.5 fromt=0 tot
=3.0, plots 8 and 9 are at17.0 andt=19.5(«=0.375,3=0.005,
Pe=10, D=1.0). The time evolution of the consecutive plots is
from top to bottom and from left to right.
o
scales creating sharp concentration gradients for a more ef-
ficient diffusive transport at small scales. In these studies it
has been shown that the different moments of the deviation

of the local concentration form the mean concentration decay © 0 10 20 30
exponentially in timg4—6]. Thus, for example, the standard t

deviation of the concentration field evolves in time as
FIG. 2. The standard deviatiml, defined in Eq(18), obtained

o from the numerical integration of Eg&l3) and(14), plotted against
[ 2 _ 2 __ _

oe(t) = (et x,y)) ~(e(t.x.y)) exp-AY,  (18) t for (@) Da=0.2,(b) Da=0.65,(c) Da=2.0(shown by the oscilla-
tory lines. The result for the unreactive ca@ea=0) is shown by
the smooth linga=0.375,8=0.005, Pe=1f) D=1.0).

where( ) represents averaging over the whole domain. A plo
of the standard deviation in the concentration fieldacl,

against time for our system is shown in F_ig. 2 on a lin-logcorresponding to the stable limit cycle, as=|p,/ T(Da)),
plot. We note thaw, has the same behavior ag, so for  \herep, is the Floquet exponent corresponding to the limit
simplicity only o needs to be considered. In Fig. 2 we plot cycle and is independent of the Damkghler number. A direct
o, for the unreactive caseDa=0) by the smooth line and consequence of Da multiplying the chemical dynamics in
ShOWO’Cl for cases when D& 0 by oscillatory lines. Egs.(13) and(14), is the dependence at. on Da according
Consider the unreactive case first. In the early stages th® Tc(Da)=T,(Da=1)/Da. u shows how fast a point in the
standard deviation stays almost constant due to the fact thahase space is attracted to the limit cycle. ThuSdefines a
the loss in the amplitude of the perturbation is compensatedharacteristic time scale of the chemical dynamics. For Da
by the exponential growth in length of the filaments. Diffu- =1 and the other parameters used in the numerical simula-
sion is almost negligible in the beginning as there are onlytions T.=2.172 and the corresponding Floquet exponent is
large scale structures in the concentration distribution. Aftep,=-2.603. This gives a chemical time scale of
the filaments have invaded the whole domain they start over~2.603Dall; (Da=1). Hence a value of Da=0.65 gives
lapping and interacting and small scale structures are formecomparable characteristic decay rates for the chemical kinet-
making diffusion more efficient. This leads to an exponentialics and mixing. We consider this value of Da as well as Da
decay of the standard deviation wixk=0.7867. The inverse =0.2 and Da=2.0 which give, respectively, decay rates for
of the decay rate of the standard deviatioft defines a the chemical reaction that are approximately three times
characteristic time scale associated with the decay of an inislower and three times faster than the decay rate in the purely
tial perturbation due to the combined effects of advectionadvection-diffusion case.
and diffusion. In Fig. 2 we plot the standard deviation of the spatial
We now consider the effect that a nonzero Damkohledistribution of the first component,o;, for Da
number has on the overall dynamics. By measuring the pe=0.2,0.65,2.0 as a function of time on a lin-log plot. The
riod and the Floquet exponent of the limit cydeof the  oscillations in the standard deviation are due to the oscillat-
(dimensionlesskinetic scheme, we can define a decay rateing nonlinear chemical dynamics. As mentioned above the
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FIG. 3. Plots of the development of the initial perturbatia) FIG. 4. () (cy), the average value @} defined by Eq(19) and
in the (c,,c,) phase plane fofa) Da=0.65 withAt=0.5 fromt=0, (b) the standard dewatloncl, defined by Eq(18), plotted against

(b) Da=2.0 withAt=0.2 fromt=2.4 («=0.375,8=0.005, Pe=1%) obtained from a numerical integration of Eq4.3) and (14), for
D=1.0. ' ' Da=22.0 andA=0.05 (radius of the initial perturbation@=0.62,

B=0.0001,D=1, Pe=16, dt=0.001).
increase of the frequency with Da is explained by the depen- i ) .
dence ofT, on Da. Comparing the unreactive case with the0t€ that the concentrations of and c, outside the limit
reactive cases in Fig. 2, shows that the change of Da has fycle are much more rapidly attracted to it than those within.

significant effect on the decay rate of the standard deviatiod NS ¢an be explained by the time variation along the limit
Te,. The decay rates for Da=0.6%=0.7827 and for the cycle, which is described slowly for the parts wheyeandc,

unreactive case are directly comparable. However, there is aﬁ‘f\’e their higher values and quickly where their values are

indication that the homogenization process is slightly fastet®Ve'- Thus the h|ghe_r concentrations qf and C2 have a
for Da=0.2(\=0.8223 and slightly slower for Da=2.0 much Ipnger time periods when they are rglatwely close to
=0.773) than for the unreactive case, though these tendent-he limit cycle and thus can be attracted to it.

cies are only marginal at best. This trend of a slightly slower B. Subcritical case,8< B,

decay of the standard deviation for larger Damkohler num-
bers does not become more accentuated if the Damkdhl%li

number is further increased. Computations for Da=é.0 scheme and it is this case that we now examine. We took
=0.7733 and 6.0(r=0.7729 show that the decay rate of a=0.62, =0.0001, D=1 and an initial perturbation in

the standard deviation is essentially the same at that foungich a central regioriof radiusA) was set at the steady

for Da=2.0. _ . state(c$,c5) with the rest of the reactor uniform in space and
We can use our results to plot phase plane diagrams, i.e

. . ; oscillating in time. Both states are stable in the kinetic
plots of ¢, againstc,; obtained from our numerical data at a

) ) <~ scheme for these parameter val{i28]. For the smaller val-
given time. Plots for Da=0.65 and Da=2.0 are shown in F'gues of Da the initial state became homogenized within the
3, plotted at equally spaced time intervalst=0.5 for Da 9

- _ i o . . —%  oscillatory behavior in the same way as described above.
=0.65 anAt=0.2 for Da=2.0. The limit cycle in the kinetic However, for larger values of Da this is not the case. Now

system is shown by the closed loop. These diagrams prOVidt‘Fle effect of the relatively weak mixing within the chaotic

an explanation as to why the chemical reaction has I'tt.leadvection and the relatively strong chemistry is to allow the

overall effect on the homogenization process. When the mlX'steady state to spread through the reactor. Eventually this

Ing 1S muph .faster than the chem.|cal kinetiganall D3, steady state dominates and the reactor is everywhere at its
homogenization of the concentrations happens before th

: S

limit cycle is reached. When there is slow mixitigrge D3, gp?lsally homogen_eous ste_ady_ st(x@, c2)-

. ) . - e illustrate this behavior in Fig. 4, where we plot the
points in the phase space are quickly attracted to the |Imlévera e valuéc,) of ¢,, given b
cycle and, as the chemical dynamics is neutrally stable with 9 L v 9 y
respect to perturbations along the limit cycle, the concentra-
tion fluctuations are dissipated only by mixing and diffusion. (cp(t) = ff ci(xy,t)dx dy (19
In both cases the homogenization rate is dominated by the
coupled effect of mixing and diffusion, therefore is largely and the standard deviatiarn, , defined by Eq(18), for Da
independent of the reaction rate measured through Da. We22.0 andA=0.05. The figure shows that the system has a

For B<pf, there is a range otx>ay where a stable
eady state and a stable limit cycle coexists in the kinetic
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relatively long period of oscillatory behavior for this value of erage profile across the filament in the convergent direction,
Da, undergoing many oscillations unt#= 10 before there is

a rapid change to the steady state tbyl5. This suggests ac —xﬁ _ D& +5a(1 P 401C2)

that both oscillatory and steady states can exist simulta- at ax  ax? 1 B+ci)’
neously for a relatively long time before there is a rapid

transition to steady behavior everywhere. The decay of the PR g e cc

standard deviation in Fig.(8) is much faster than in Fig. 2 2 _ 277 +5aa(cl— 1 22>_ (20)
due to the stronger attraction to the stable homogeneous gt Tax  ax B+cy

steady state. . . .
y HEquatmns(ZO) represent the evolution of a transverse slice of

As the value of Da is decreased from Da=22.0 the lengt i i L . ¢ f th dt
of time that the oscillating and steady states exist simulta® '"'@Mment In a Lagrangian reterence irame, the second term
n the left-hand side is the mean convergent flow. The pa-

e e e e W Ifameters are given by EQ45) and(16), except that now he
Damkohler number precisely for this transition from oscilla- Damkohler number is B=k;[CIO,]/\. In this simplified
tory to steady behavior at large times and suggests a “saddigodel the folding effects of the 2D chaotic advection are
node type” bifurcation for this transition. Our numerical re- completely lost, hence this model loses its validity when fila-
sults indicate that the changeover from oscillations to steadjnents start interactingsecond stage in the homogenization
states occurs between Da=21 and Da=22. As the Damkohl@rocess A mean strain is assumed through although in
number is increased from Da=22.0 the length of time thathe 2D flow the strength of the stretching fluctuates in time
the oscillations exist decreases with the steady state invadirgd space. Equation0) are defined on s <x<, t>0

the system more rapidly. with the zero-flux boundary conditions

It is worth mentioning that the critical Damkdhler number
depends on thg extent of the area in the central regior_l of the 9G —0 aslx—» (i=1,2. (21)
domain which is set to the steady state. A larger radius for aX

this perturbation requires a smaller critical Damkdhler num- S . . .
- oo . We start by considering a linear stability analysis of Eq.
ber. In the alternative situation, where the whole reactor is i . 2 .
X . . . (20) in two cases, one wheg, and c, are oscillating uni-
the steady state except in a localized central region which i : X
; o . . : . ormly in space, i.e.cq,c, eI for all x and the other when
oscillatory, it is also possible to obtain two different final the system is at its steady state=cS, c,=cS. For simplicit
states in the reactor, either the steady state or homogeneo\lljvse reystrict attention to thg A= 11 N phicity
oscillation. However, in this case, the size of the initial per- :
turbation is much more important in determining the final
outcome than in the previous setup. A. Linear stability analysis_ of _the spatially homogeneous
The Lagrangian filament model, which reduces the 2D oscillations
problem to a 1D analog has proved useful in giving insights \ye first consider small perturbations in the Lagrangian
into some of the transitions seen in .2D advgct|on-reactlonfi|amem model(20) when ¢, and ¢, are oscillating every-
diffusion systems and this 1D model is described in the nex{yhere in phase on the limit cyclé. Here it is more conve-

section for our specific problem. nient to rescale time by=Dat and put
IV. LAGRANGIAN FILAMENT MODEL cix ) =cf(t) + Ci(xb),  ca(x,t) =c3(t) + Co(x,b),
The repeated stretching and folding of fluid elements in IC1,Cf <1, (22)

the chaotic advection causes an initial spatial perturbation to h v iodic funci Fwith i0dT.. ind
evolve into complex spatial structure which eventually fills WNErecy, ¢z are periodic functions afwith period 1, inde-

the whole domain. In the initial stage, however, a clear backPendent of [a. The(linean equations forC,,C, are, from
ground exists and the filaments are well-defined. The chaotiEd- (20),

nature of the 2D flow ensures the existence of a negative and

positive Lyapunov exponenit—)\, +\), corresponding to the ‘9_% - ;(az_czl + X‘9_Cl> + a,/(t_)Cl + by(t_)Cz,
advection dynamics=v(r,t). Therefore, at any point in the dt  Da\ 9X IX

flow, a convergent and a divergent direction can be associ-

ated to the eigenvectors\tHence in a Lagrangian reference JC 1 [ #C JC

frame a fluid particle is subjected to a stagnation-type flow =2 ~—<—22 +x—2> +¢,(0C, +d,(DC,, (23
corresponding to the simplified advection dynamics, dt  Da' 9X Ix 7 7

vx=—AX, vy=Ny. Along they axis (divergent directionthere

is a continuous stretching of the initial perturbation, advecwherea,, b,, c,, andd, are the elements of the Jacobian of
tive transport will dominate being much faster than diffusion.the kinetics evaluated o0g](t),c(t) and are periodic func-
However, along the axis (convergent directionthe forma-  tions with periodT..

tion of small scale structures indicates that advection, diffu- We now use the basis functions to be defined in Sec. IV B
sion, and reaction need to be considered together. This leadls Egs.(31) and(32), to construct a solution of Eq§23) in

to the one-dimensionatimensionlessequations for the av- the form
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» 3.0
(C1,Cp) = 2 (uy(D), (D) Wi(x). (24)
k=0
Substituting Eq(24) into Egs.(23) gives ag
d—uk—[P ®-Dal(2k+ DI, (k=0,1,2,..) X
dt Y k e 1.0
(25
where 0.0
a b 10.0 105 11.0
P:(C: d:)’ Uy = (Uy,0p) 7, t

FIG. 5. A gray-level plot ofc; obtained from the numerical

integration of Egs(20) for Da=20.0 anda=0.62, 3=0.0001,D
=1.0.

and| is the unit matrix. If we puu,=exd-(2k+ 1)5a‘1ﬁu
in EQ. (25) we obtain

d_u_: P,u (26) . .
dt cillate homogeneously in space except for a small central
o ) region which is set to the steady state, then filaments with
and it is Eq.(26) that determines the Floquet exponents foryheir central region very close to steady state, as presented
tlhe. limit cycIeF..Note that the translational invariance of the gpy5ve in the filament model, can form and propagate even-
limit cycle solutionsci(t),c3(t) means that onéof the two  tyally filling in the whole domain. Thus a transition of the
Floquet exponents is zero. Now E@6) has a solution such  system from oscillations to steady state can take place as
that u(t+T,)=e* eu(t) for all t for the other Floquet expo- presented in Fig. 4.
nentp, [30]. Hence Eq(25) has a solution which has We also tried the alternative procedure of starting the nu-
_ g __ — merical simulations with the system in its homogeneous
u(t+ To) = epy P2 ey, (f) forallt.  (27) steady state and perturbing argumdo to the stableglimit
If T is a stable limit cycle thep, <0 and expressio(27) cycle. In all these computations the system returnec~i to the
shows that this limit cycle behavior is also stable in the La-homogeneous steady state no matter how large a valua of D
grangian filament model. or perturbed region was tried. An explanation is suggested by
The above analysis shows that the spatially homogeneouke purely reaction-diffusion systef&gs.(20) with the flow
limit cycle (c](t),c}(1)) is stable to small perturbations for all terms neglected Here the tendency is for the stable steady

Da. This result is in line with the two-dimensional findings Stateé to propagate into the oscillatory region. The effect of

and explains the mechanism by which homogenization hagh€ flow is to counteract this tendency and gives the possi-
pens in the initial stages of the 2D casealf o, the same ~ Dility of a balance between the outward propagation of the
stability property is valid for the spatially homogeneousSteady state and the inflow of the oscillatory behavior. If the

steady statécs,c) (see Sec. IV B When8< 3, the Hopf  Situation is reversed, the flow reinforces the tendency of the

bifurcation is subcritical and it is possible to have both thesd'°MPgeneous steady state to propagate out from its initial

states existing for the same value @f This occurs, for ex- €910N

ample, whenae=0.62, 3=0.0001, which is the case that we

consider for our filament model. We started numerical simu- B. Linear stability analysis of the steady state
lations with the system oscillating homogeneously and then i )

applied a perturbation which put a region arowsD to the For this second case we write

steady statécs,c3). We solved Eqs(20) with D=1 for in-

— A~S — ~S <
creasing values of ® as well as varying the extent of the G =ci+ kD), cxt) =G+ Cxt), [CCl <1

perturbation region. For the smaller valuesNCEi,DJp to Da (28)

=15.0, the system returned to its spatially homogeneous os- d obtain the i i

cillatory state, no matter how large we made the perturbe(‘]‘n obtain the finear equations

r(_egion. For [a greater than_ B=20.0 we found,' for_ a suffi- 4C, #C, dC, ~ [3-12%3 20

ciently large perturbed region, very weak oscillations about ——==——+x—— +Da| Ci - C,l,
X ax 1+253 1+253

the steady statéclose tox=0) and spatially uniform oscilla-
tions (for largerx) existing simultaneously, with a relatively

thin transition region between these two regimes. This be- 5c, #c, 4C, =~ 2a 5a
havior, illustrated in Fig. 5 for B=20.0, persists for all the ¢ = 52 T X5 TP 15 258C1_ 1+ 25802 :
higher values of & tried, with the size of the perturbed (29)

region needed to initiate it reducing in extent. If, in the two-
dimensional subcritical case, the whole reactor is set to os- We look for a solution of Eqs(29) in the form
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kS 15.0 7 '
(CL.Co) =S (8, bYe™ Wi(x), (30) 125 5
k=0 ] '

. . 10.0 7 I i
where theay, by are constants and where the basis functions ~ ] |
Wi (x) (k=0,1,2,..) satisfy Da 7.50 1 !

W+ XW, + (2k + )W = 0 (31) 5.00 1 i
and are chosen so as to satisfy the symmetry condition 250 97 I
W, (0)=0 and be exponentially small as- . The solution 0.00
00 01 02 03 04 05

to Eqg.(31) can be expressed as
1 x2
Wi(x) = e_X2/21F1<_ k;E;E) (k=0,1,2,..), (32

where lFl(—k;%;x2/2) are confluent hypergeometric func-
tions [29] and, withk a positive integer, are polynomials in
x? of orderx?.

Applying Egs.(30) and(31), in Egs.(29) gives the equa-
tion for oy as

~ (3-5a-12
O'ﬁ+|:(4k+2)—Da(T5858):|0'k+(2k+1)2
—5a(2k+1)<3_5a_1258>+ 25a D&a2=0.
1+25 (1+256)
(33

If the steady statéc],c) is stable in the kinetic scheme, i.e.,
a>ay=3/5-253, then Eq.(33) gives Réay) <0 for all k

and this state is also stable in the Lagrangian filament mode?.

1 o Xy

FIG. 6. Critical Damkéhler numbersafor the Lagrangian fila-
ment model given by Eq¥34) and (36). In region Il the steady
state is stable and in region | and Il the steady state becomes
unstable.

in the Lagrangian filament model. This is illustrated in Fig.
6, for =0.005 for whicha;=0.04172.

We solved Eqgs(20) numerically with the system in its
uniform steady state perturbed in a small region centered on
x=0. We first considered the case wher< oy, taking «
=0.02,8=0.005. For these parameter values, %) gives
Da=0.5646 for the system to beconiénearly) unstable.
Our numerical integrations showed a change from stable
gion Il in the bifurcation diagram plotted in Fig.),6at Da
=0.5 where the system returned to its spatially uniform
teady state, to unstabesgion I in the bifurcation diagram

If a<ay and the steady state is unstable in the kinetigPlotted in Fig. § at Da=0.6, consistent with this bifurcation

scheme, Eq(33) shows that there is the possibility of a Hopf
bifurcation when @ =(4k+2)(1+258)/(3-5«¢—1258), giv-
ing a minimum value of & for this instability at

- 21+259)
P 3 5125 59

For this bifurcation to occur the fingtonstantterms in Eq.
(33) must be positive. Applying Eq.34) in these terms in
Eq. (33) shows that we must have
13+ 125 - 4y10(1 + 258)

5

ay > a> a;, Wherea; =
(35

for a Hopf bifurcation. For values o?ﬁ)>f)aH (anda> ay)
the steady state],c5 is unstable in the Lagrangian filament
model.

value. For values just above the bifurcation value, up to

Da=0.9, the numerical solutions approached a steady state
with a spatially nonuniform profile associated with the first
mode (k=0) being unstable. This is illustrated in Fig(ay

with plots of the concentratiogy for a range of values of &

For higher values of B, spatially uniform oscillations,
consistent with the limit cycles in the kinetic system, were
quickly set up from the initial perturbation. However, there

was a “window,” from approximatelfﬁ):G.O t0~[21:7.0,

where more complex behavior was seen. In this rangeaof D
the system was oscillatory for small values»oénd steady
for larger values, with a time dependent, spatially nonuni-
form profile joining the oscillatory region to the spatially
uniform steady state at large This behavior is shown in
Fig. 7(b) by a gray-level plot ott, for Da=6.0.

We next considered a value fow in the range
g <a<ay, taking «=0.375, again with3=0.005, for

Equation(33) also shows the possibility of a saddle-node hich Eq.(34) givesT)aH:4.5. Our numerical computations

bifurcation (real root changing signvhere

Ba—2k+1
"~ 50«

+1250% - 10a(13 + 1258) + (3 - 1258)9). (36)

(3-5a-1253

This requiresa < a; where 4 is defined in Eq(35). Equa-
tion (34) and the lower root in Eq.36) (with k=0) identify a

critical value of Da for the steady state,c5 to be unstable

showed that, for values of dless than the bifurcation value
(region Il in the bifurcation diagram plotted in Fig),&he
system returned to its spatially uniform steady state and, for
values somewhat greater thaaD(region Il in the bifurca-
tion diagram plotted in Fig. )6 spatially uniform oscillations
were set up. For values of @Djust above the bifurcation

value, from approximately~®:5.0 to 8.5, more complex
behavior arose, with the solution being oscillatory for small
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FIG. 7. (a) Steady profiles of; obtained from the numerical
integration of Eqs(20) for «=0.02, 3=0.005,D=1.0 and for a
range of values of B from 0.6 to 0.9(b) A gray-level plot ofc, for
Da=6.0 anda=0.02, 3=0.005,D=1.0. The solutions of the Egs.
(20) presented above i@ and(b) correspond to region | and I,
respectively, in the bifurcation diagram plotted in Fig. 6.
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tions. We considered the particular case of the CDIMA reac-
tion, since this allowed us to treat two separate cases. One
when uniform oscillation is the only stable state and the
other when both oscillatory and steady behavior are stable
states. In the firstsupercritical case, the initial perturbation
is always homogenized and the system returns to spatially
uniform oscillations. The decay rate of the spatial fluctua-
tions is virtually the same as for a nonreactive component.

When the kinetic system can have either a stable steady
state or stable oscillatiorisubcritical casg we find that the
reactor can behave in two possible ways. For smaller
Damkohler numbers the initial perturbation is homogenized
within the oscillatory response in a way similar to the super-
critical case. However, for larger Damkdhler numbers this
does not always happen and an initial perturbation, setting a
certain region to the steady state, can spread throughout the
reactor, leaving it finally everywhere at this steady state. The
reason for this is suggested by the Lagrangian filament
model. The initial effect of the chaotic flow is to form thin
filaments, separate from each other, in which the concentra-
tions of the reactants are at their steady states. This initial
phase can be described reasonably well by the 1D model,
which we have seen can either return to the oscillatory state
(smaller Da or set up steady states within the background
oscillations(larger Dg, see Fig. 5. Thus for the smaller val-
ues of Da the concentrations within the filaments become
oscillatory and, as they are stretched further and interact
spreading through the reactor, the uniform oscillatory re-
sponse returns. However, for larger Da, the concentrations in
the filaments remain at the steady state and the further
stretching and folding caused by the chaotic flow spreads this
steady state throughout the reactor, leading to the relatively
rapid collapse of the oscillations seen in Fig. 4.

Many experimental studiesee Ref.[10] for a detailed
list of referenceghave investigated the effects of stirring on
nonlinear chemical dynamics, especially in the continuously

values ofx and at its steady state for higher values. This isstirred tank reactoCSTR) configuration, and have shown

illustrated in Fig. 8 with a gray-level plot af; for Da=7.0.

V. CONCLUSIONS

We have considered the response of an oscillatory rea
tion stirred by a chaotic flow to different spatial perturba-

FIG. 8. A gray-level plot ofc; obtained from the numerical

integration of Eqs.(20) for Da=7.0 anda=0.375, 3=0.005,D
=1.0. The solution of the Eq$20) presented above corresponds to
region Il in the bifurcation diagram plotted in Fig. 6.

that a spatially distributed system may behave qualitatively
and quantitatively differently from its homogeneous refer-
ence system. The heterogeneity due to imperfect mixing,

coupled with the nonlinear dynamics, can give rise to a much

richer behavior of the system, i.e., oscillations, quenching of
oscillations and even chaotic oscillations. For bi-stable sys-
tems it has been shown that the final state of the system can
be changed by varying the stirring rate and our results for
B=0.0001 have confirmed that, by changing the stirring rate
through the Damkdhler number, the system either settles to a
uniform steady state or oscillates homogeneously at suffi-
ciently long times.

The present problem can be thought of as a model for a
reactor operating in batch mode, with the chaotic flow rep-
resenting imperfect mixing within the reactor. In this situa-
tion we would expect the final state to be spatially homoge-
neous(oscillatory or steady An alternative type of reactor
that is often used is the flow react@STR) in which there is
a continuous inflow of fresh reactants with the products of
reaction continuously leaving the reactor. For a perfectly
mixed reactor, the dynamics of the CDIMA reaction are
modified by the flow ratg¢28] with now two values ofa at
which a Hopf bifurcation can occur and a critical flow rate
above which the reactor is stable for all
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0 5 10 15 FIG. 10. Probability density functiofpdf) of the concentration
t field c; sampled at timé=15 for Da=85 after the balance between

steady and oscillatory states has been reached.62,3=0.0001,

FIG. 9. The standard deviatiortl, defined by Eq(18), plotted D=1, Pe=16, dt=0.003)

againstt obtained from the numerical integration of Eg$3) and
(14), by replacing the sinusoidal shear flow with the open blinking
vortex-sink system for Da=8&v=0.62,3=0.0001,D=1, Pe=10,
dt=0.00D.

nigue to integrate the revised equations. Two regimes have
been found in the 2D problem as the Damkdhler number was

varied. If Da is small (slow reaction/fast flow the initial

A model for imperfect mixing for this type of reactor patCh of Steady state is elongated into thin filaments and
could be provided by a chaotic flow with both an inflow and starts Ieaving the domain through either of the vortex sinks.
an outflow, the “blinking vortex sink” for examplgg1,32. Due to the rapid outflow relative to the reaction rate the
This system has been shown capable of sustaining completeady state cannot respond to this loss by converting suffi-
(temporally oscillating structures in the combustion context cient oscillating fluid elements into steady and eventually the
[19,20 and so we might also expect complex structures ifvhole domain returns to spatially homogeneous oscillations.
the present case. The ability of the 1D Lagrangian filamentn the large Da regimeDa=385 or larger (fast reaction/slow
model to have regions of both steady and oscillatory behavilow), the initial perturbation propagates much more rapidly,
ior co-existing for the CDIMA reaction suggests that this sortPeing able to balance the loss due to the outflow, and after a
of configuration might be maintained in this type of flow transient time a periodic response in the system is set up in
reactor. which there are regions of both steady and oscillatory behav-

To investigate the possibility of the co-existence of steadyor- This is illustrated in the plot of the standard deviatign
and oscillatory states in the 2D problem, we considered thef the ¢, concentration field in Fig. 9. As a consequence of
case of an open flow modelled by the blinking vortex-sinkthe Damkéhler number multiplying the chemical dynamics
system[31,32. This open flow models the outflow from a the period of the oscillations decreases with the factor Da
large reservoir through two vortex-sinks which are some dis-
tance apart from each other and are opened and closed alter- 0.2001
nately. This flow has a characteristic peribdand after ev-
ery half period the active vortex sink switches position. The A
problem was solved on a square dom&lir[0,L]X[0,L] <\.}" 0.2000
by applying zero-flux boundary conditions, thus allowing the
whole domain to oscillate homogeneously if no spatial varia-
tion is imposed. The parameters of the flow are the same as
those used in Ref{19]. We considered two cases for the 0 10 20 30 40 50
chemical dynamics, suggested by our stability analysis of the (a) t
1D model. In the first case we followed the development of 0.22
an initial localized spatial region set to the steady state
within background oscillations. The evolution of such a per- 0.21
turbation has already been investigated in the 1D filament A_
model in the previous section. There we found that, for a ¢ 020

sufficiently large value of~la, filaments consisting of very
weak oscillations around the steady state in a central region
surrounded by spatially uniform oscillations. For smaller val- 0.18

ues of Da the spatially homogeneous oscillatory solution was (b) 0 10 20 t 30 40 50
restored.

This 2D open flow system provides the possibility for  F|G. 11. Plots of the average concentratiorcpfdefined by Eq.
such filaments to form and propagate, so some similarity19), againstt for the open blinking vortex-sink system starting at
between the 1D and 2D cases could be expected. IN(E8)s. the (unstablg steady state perturbed by local oscillations fay
and (14), we replaced the sinusoidal shear flow with theDa=2.0 and(b) Da=4.0(«=0.375, 3=0.005,D=1, Pe=16, dt
blinking vortex-sink flow and used the same numerical tech=0.00).
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which explains the very dense nature of the plot. In the insetelatively fast mixing allows this state to be maintained in
a zoom in is given on a small time interval to show thethe reactor. A similar result is obtained in R¢L7] for an
periodic, period 2, response in the variance. By “binning” theautocatalytic reaction. For larger values of Da, the concen-
¢, values from the whole domain sampled at any time instanrations remain oscillatory within the filaments that develop
after the transients had died away and plotting the correin the flow. Thus, in this case, there are regions of both
sponding probability density functiofpdf), two clear peaks  oscillatory (in the filaments and steadyas backgroundre-

can be see(Fig. 10 att=15.0. The high peak represents the ghonses. These two situations are illustrated in Fig. 11 with
background oscillation which is the most widespread in theplots of(c,), the average concentration defined by Ef),
domain and the smaller peak represents the steady ctate againstt for Da=2.0[Fig. 11(a)] and Da=4.0[Fig. 11(b)],

=0.2 confirming that the steady state and oscillations cap . voth figuresa=0.375, 8=0.005, D=1.0. Figure 1)

?r?c;géllﬂ in the 2D context as predicted by the 1D fllamentshoWS the system returning to the steady stafs=0.2),

The second scenario that we considered was the Supé/rv_hereas Fig. 1b) _shows a sustaineq oscillat_ions about this
critical case, in which the system was at its spatially uniformStéady state, again showing behavior predicted by the 1D
(kinetically unstablg steady state with a smaltentra) re- ~ model.
gion set to be oscillating. Our calculations for the 1D model,
which includes flow effects, shows that the steady state is
stable for smaller B, becoming unstabl@nd oscillatory at
a critical value of @, see Fig. 6 or expressig84). We find We wish to acknowledge the support of the ESF Pro-
that this carries over into the 2D model, where we saw thatgramme REACTOR and Istvan Zoltan Kiss wishes to thank
for smaller values of Da, the oscillations died out and theORS and the University of Leeds for financial support. We
system returned to the uniform steady state everywheregire grateful for useful discussion of this topic with Tamas
Even though this state is unstable in the kinetic scheme, th&él.
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